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ABSTRACT

The theoretical response of long-baseline optical interferometers and Fourier-
transform spectrometers, including polarization effects, is derived. The formal-
ism, employing the Jones and Mueller calculi as well as the relationship between
them, was adapted from previous work in radio interferometry and tailored specif-
ically for optical wavelengths. Expressions for Jones and Mueller matrices corre-
sponding to specific optical components and effects are stated. It was determined
that the system squared visibility depends on the instrument, atmosphere, and
normalized intrinsic polarization of sources under observation. A sample alge-
braic calculation was performed to highlight the typical functional form for the
instrumental system squared visibility, demonstrating that reductions from unity
can be determined directly from differential measurements of polarization quanti-
ties between the arms. Monte-Carlo simulations were performed using two trains
of identical mirrors with random relative-orientation offsets, yielding results con-
sistent with the algebraic example. Four mathematical appendices are provided

for reference.

Subject headings: techniques: interferometric — techniques: polarimetric

This series of papers is dedicated to the late Dr. William Blitzstein, astronomer and friend.
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1. Introduction

Coherence is a fundamental property of electromagnetic radiation, providing a wealth
of astrophysical information unavailable using incoherent techniques. Long-baseline inter-
ferometers, Fourier-transform spectrometers, and polarimeters are designed to observe dif-
ferent types of coherence. Long-baseline interferometers measure spatial coherence, in order
reconstruct the structure of a source. Fourier-transform spectrometers measure temporal
coherence, so that the frequency dependence of a source may be determined. Polarime-
ters measure the relative amounts of polarized and unpolarized flux, which is equivalent to

measuring the degree of temporal coherence between orthogonal polarization states.

Polarization plays a role in interferometry at all wavelengths. For modern radio interfer-
ometers, electromagnetic radiation is incident upon an array of antennas (linear electric-field
detectors), each consisting of one or more reflectors, polarized feeds, and waveguides. The
radiation intercepted by each antenna is converted to an electrical signal, digitized, and
multiplicatively correlated (interfered), with gain factors and phase shifts introduced at each
step along the way. Michelson (phase-sensitive) optical interferometers do not convert visible
light into electrical signals before combination, because the signal-to-noise ratio of the fringes
will always be less than unity due to the Uncertainty Principle (Heffner 1962; Oliver 1965).
Therefore, visible light must be interfered optomechanically (additively), not electronically,
in such instruments. For modern optical interferometers, e.g., the Navy Prototype Optical
Interferometer (NPOI; Armstrong et al. 1998), radiation is incident upon light collectors and
reflected along a series of mirrors to one or more points of beam combination, finally ending
at a square-law electric-field detector. Note that the polarizing and retarding properties of

the components in optical interferometers are analogous to the gains and phase shifts in
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radio interferometers (in the former case, however, the gains and phase shifts occur mostly

before detection).

Over the past two decades, several groups have investigated polarization in relation to
optical interferometers. Vakili (1983) described a polarimeter used in conjunction with the
CERGA instruments. Also, Traub (1988), Beckers (1990), Rousselet-Perraut et al. (1996),
and Ridgway and Bagnuolo (1996) derived simple expressions for polarization effects on fringe
contrast. At radio wavelengths, Hamaker et al. (1996), Sault et al. (1996), and Hamaker and
Bregman (1996) created an extensive theoretical foundation for understanding polarization
in interferometry, including response and calibration. Some aspects of these three papers

are applicable to optical interferometers.

For a greater understanding of instrumental capabilities, improved accuracy in astro-
physical results, and the eventual ability to measure the spatial structure of a source in polar-
ized visible-light (optical interferometric polarimetry, hereafter OIP), a theoretical framework
specifically tailored for optical interferometers is both desirable and necessary. In this paper
(Paper I), I will describe the total response of an optical interferometer in terms of the Jones
and Mueller calculi (Shurcliff 1962; Kliger, Lewis, and Randall 1990) and perform example
computer simulations using this formalism. The concepts and formulae in Paper I will be

used extensively in the other papers of this series.

2. Spatial Coherence in Terms of Mueller Calculus

In “classical” optical interferometry theory (Armstrong et al. 1998, and references con-

tained therein), the vector properties of electric fields are ignored when describing the struc-
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ture of a source and the response of an instrument. This approximation is valid as long
as the source is not highly polarized and the physical characteristics of each arm, including

polarization and retardation effects, are not too dissimilar.

Let E(p1,t; k) and E(p,,t; k) represent the complex non-vector electric fields incident
on each arm of a basic two-element optical interferometer (Figure 1), where g) and g, are the
light-collector location vectors in a plane perpendicular to the source line of sight and k = 1/A
is the wavenumber. As these electric fields pass through their respective atmospheric paths
and arms, they are modified until beam combination and detection; let these modifications
be expressed as the complex multiplicative factors J;(k) and Jo(k). The total electric field

is the sum of the individual electric fields, or
E(ﬁlg, t, Ii) = Jl (K)) E(ﬁl, t, li) + JQ(K)) E(ﬁg, t, K)) ej27rn6z(t) s (1)

where j = /=1, pls = p1 — pa, and 02(1) is the delay-line dither across the central fringe

(the delay line, included in J;(k), has already removed the geometric delay).

Optical detectors are sensitive only to flux (the time average of the squared electric
field), so the response of a basic two-element optical interferometer, integrating over the

bandpass, is
1(pra, 02(t); Keps) = [Mur(Kegp) + Maa(kesp)] 1(0s kiegs) + 2 Mua(kegs) I(ra; epy) €27 e 190 (2)

where kepp = 1/Aesp is the effective wavenumber of the bandpass, I(gi2,0z(t); kepy) is
the observed flux, 0 is the null vector, I(0;kesr) = |E(f1; kess)|” = |E(fa; keps)| is the
flux measured by an ideal light collector (the arm or zero-spacing flux), I(pia;kefr) =
E(f1; kesr) E*(f2; kess) is the coherent flux measured by two ideal light collectors (the base-

line flux), My (Kefs) = |Ji(Kepr)|> and Mag(kes) = |Jo(kess)|” are the arm throughputs, and
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Mis(Keff) = Ji(Kerp) J5(Keps) is the baseline throughput. In general, the throughputs may
be functions of time. Note that I(pi2, 02(t); kess) is a real quantity, but I choose to express
it as a phasor, for convenience. The bandpass, Ak = Kaz — Kmin, 1S assumed small enough
such that I(pia; kesr) is not reduced significantly (Tango and Twiss 1980). dz(t) is used to
distinguish between the arm and baseline terms during visibility measurements. It is varied
over time scales T;,; < to, where to is the atmospheric temporal coherence (Buscher et al.

1995).

The observed visibility is defined as the ratio of the baseline and arm coefficients from

Equation 2 (determined using Fourier techniques),

2 Myg(Kegy) } 1(p12; Kegy)
Kepr) + Moo (Kerr) | | 1(0; Kepy)

|:M12(’feff)] I(p12; Kegr) ]
Mo(kers) || 1(0; kegp)
= Kl?(/ieff)vs(ﬁm;’{eff)’ (3)

Vobs(ﬁlQ;K;eff) = |:M11(

where Mo(kepr) = 3 [Mi1(Keps) + Mos(kepy)] is the average arm throughput, Vy(fio; kesy)
= I(Pho; kess)/I(0; kepy) is the source visibility, and Kys(kesf) is the system visibility or
calibration constant (0 < |Kja(kesr)| < 1). For ground-based optical interferometers, the
phase of Vs (pi2; kesy) fluctuates over time scales of order ty and |Vous(pi2; kesr)| estimators

include complicated bias corrections (Colavita 1985), so

Vobs (P12; “eff)\2 = \K12("€eff)|2 Vs (pi2; “eff)|2 (4)

is the principle observable quantity for modelling sources, especially for single-baseline config-
urations (assuming Poisson noise, it has a relatively simple bias correction; Colavita 1985).
In practice, |K1(kess)|” is significantly less than unity and time-dependent (due to low-

frequency instrumental and atmospheric instability), so “calibration” sources (with a known
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\Vs(Pr2; Kepr)|, preferably close to unity) are used to estimate |Ky(k.f)|” for program-source

observations.

The variables in Equations 1 and 2 are scalar approximations to vector quantities. To
incorporate vectors into the previous analysis, Equation 1 must be expanded in terms of

Jones vectors (cf. Appendix A) and Jones matrices (cf. Appendix B), or

(= . _9 B> 4. < YA j2m K 6z(t)

E(p12:ta ’{) - Jl(’{’) 'E(plata K’)+J2(K’) 'E(p27t7 K’) € . (5)
The scalar multiplication in Equation 2 may be replaced by a dot product, but substituting
E(f12, t; k) — E,(t; k) and B*(Fs,t; k) — E%(t; ) (in Appendix B) and performing the
necessary outer products and matrix transformations (also in Appendix B) yields a more

general expression for the flux response of a basic optical interferometer,

—

S(pr2, 02(1); Fess) = [ﬁll(ﬁeff) + Moz (kers) | -S(0: eps) + 2 Mo (eps)-S(Bras epy) e/ Fers 92(0)
(6)
where the scalar fluxes have become 4x1 Stokes flux vectors and the scalar throughputs
have become 4x4 Mueller throughput matrices. The polarization structure of the source is
contained in this equation, which means that it is the starting point for OIP observations of

astrophysically interesting objects. This topic will be treated in a later paper of this series.

The first element of S(712, 82(t); Keff), 1(P12,02(t); kesr), is the quantity measured by
detectors, so I define the detector operator dr = [ 1 000 ] for the sake of mathematical
convenience. The dot product of d” and Equation 6 (after factoring non-zero I(0; 77) and
I(ph2; Kegy) from their respective terms) results in Equation 2, so the scalar throughputs in
Equation 3 may be equated to elements of the Mueller throughput matrices and normalized

Stokes vectors of the source, specifically



A

>
My(kepr) = A" Mu(kess) - S(Pri; Fefr)

= My (Keps) + Myt (Kers) a(Pri; Keps) + My (Keps) wW(Pis Kers) + Myy (Kepr) v(Bris Kepr)

where the normalized Stokes vectors are defined in Appendix B and the superscripts are
the row and column numbers, respectively, of the Mueller matrices. In other words, I have
expressed the scalar version of the optical interferometer response in terms of the vector
version, which will be useful for describing the effects of polarization on squared visibilities

(classical non-OIP observations).

As an aside, I briefly discuss systematic errors introduced into | Ko (kesf)|” due to source
polarization. For the sake of argument, assume that the instrument and atmosphere are
stable during calibrator and program source observations. If the sources have different po-
larizations, then |Ky(kess)|> estimated with the calibrator source will be slightly different
from the correct value for the program source. Up to the present time, most sources observed
with optical interferometers have polarizations less than 1%. Also, M}2(kess), M (Kess),
and M} (kess) are ~ one or two orders of magnitude smaller than M}} (k.rf). Therefore,
systematics in | Kya(kess)|” due to source polarization are now of order 10* to 1073, which
is nearly negligible when compared to typical observational errors. In the future, however,
when sources with large (and variable!) polarizations are routinely observed, these system-
atic errors could become as large as 1072. Therefore, accurate modelling of such program
sources directly from squared visibilities may not be practical in the not-too-distant future,
which means that standard interferometry imaging algorithms combined with OIP may be-

come necessary for high-precision astrophysical results.

(7)
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The Mueller matrices for the arms, 1\7[11(%ff) and 1\7[22(&6”), may be expressed as
the product of Mueller matrices corresponding to optical components (e.g., mirrors, lenses,
etc.) and effects (e.g., the atmosphere). The baseline Mueller matrix, 1(\—)/[12(/%”), on the
other hand, cannot be expressed in terms of simple Mueller matrices. Fortunately, there is
an uncomplicated relationship between the Jones and Mueller calculi (cf. Appendix B), i.e.,
both the arm and baseline Mueller matrices may be expressed in terms of the Jones matrices
of the arms, which themselves are products of Jones matrices for all optical components and
effects. In Section 4, I will discuss explicit forms of individual Jones matrices relevant to
optical interferometry, and in Section 6 I will employ the Jones matrices for mirrors in

Monte-Carlo simulations.

3. Temporal Coherence in Terms of Mueller Calculus

A Fourier-transform spectrometer (FTS) is used to measure the wavenumber spectrum
of a source (Mariotti and Ridgway 1988). Nordgren and Hajian (1999) configured the NPOI
as an FTS with the addition of a few mirrors and a beam splitter. Specifically, light from
a single siderostat was fed along both arms and interfered, and the intensity was measured
as a function of delay-line position. If 7j» = 0 and the wavenumber integration is shown

explicitly, then Equation 2 becomes the response of an FTS,
I(D) = / dk [Mn(/i) + Moy (k) 4+ 2 Mo (k) eﬂmD] I(k)
Ak
= b 2/ i €970 Mya () 1(k) (®)
Ak

where 0z(t) — D is delay-line position, Iy = [, dk[Mi1(k) + M2 (k)] I(k) is an integration

constant, I (k) is the source wavenumber spectrum, Mi; (k) and Moy (k) are the arm through-



- 10 —

puts, and Mjs(k) is the temporal-coherence throughput. Aside from a constant term and

multiplicative factor, Equation 8 is just the Fourier transform and may be inverted,

: 1
I(6) = Mia() I06) = [ dD e 2(1(D) - 1], o)
AD
where (k) is the observed wavenumber spectrum, AD & 5+ is the delay range. I is not
known a priori because it depends on the source spectrum. For convenience, let Iy = I(D)

(the average), so that sampling artifacts from the zero-wavenumber component do not appear
at other wavenumbers. If Myy(k) & constant over the bandpass, I(k) is known to within a
multiplicative factor and the problem is finished, otherwise Mj5(x) must be determined and

its effects removed.

As in Section 2, Equation 9 may be generalized in terms of the Mueller calculus,

U & <] —j2wkD Lrg S

§'(k) = Mua(w) - S() = | dD 0 [S(D) —so] , (10)
AD

where the scalar fluxes have become 4x1 Stokes flux vectors and the scalar temporal-

coherence throughput has become a 4x4 Mueller matrix (cf. Appendix B). Note that

determining S(x) is more difficult than determining I(x) because a matrix inversion is in-

volved. The dot product of d” and Equation 10 results in Equation 9, so Mj3(k) may be

<~
expressed in terms of Mj2(x) and the normalized Stokes vector of the source, namely

-~

x4
M12(KJ) = dT : Mlz(f"i) . §(K,)
= My (k) + M3 (k) q(%) + M3 () u(k) + M5 (k) (). (11)
where the superscipts are the row and column numbers of the Mueller matrix. In a typical

FTS, M{2(k), Mi3(k), and M{3 (k) are approximately one or two orders of magnitude smaller

than M5 (k). If the source is only slightly polarized, less than 1%, then My(k) ~ My (k).
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On the other hand, if the source is highly polarized, then M[2(k), M3 (x), and M3 (k) must
be determined with respect to M} (k), otherwise the results will be significantly degraded.

x4
As in Section 2, M2(x) may be expressed in terms of the total Jones matrices for each arm

(cf. Appendix B).

4. Explicit Forms for Jones Matrices

The Jones matrix for the £ arm of an optical interferometer, shown in Figure 1, may

be expressed as the product of a number of Jones matrices,

x4 x4 x4 x4 A xd
Jr = Jdet,k : ch,k : Jtrain,k : Jatm,k 3 (12)
H . . . H .
where J g is due to the detector and the position of the beam on the detector, Jy. is due
x4
to the beam-combiner input/output, J¢eink is due to the train of mirror flats from the light
x4

collector to the last mirror before the beam combiner input/output, and J4um  is due to the
atmosphere above the light collector. Contained within these matrices are rotations due to
basis transformations, which are discussed in detail in Appendix C. In Sections 4.1 and 4.2,

I will describe these Jones matrices in their native {X-y} bases.

4.1. Non-Mirrors

Assume that the atmosphere introduces a negligible amount of polarization and differ-
ential retardance upon an incoming wavefront. Therefore, the Jones matrix in its native
basis is

P 127 g (Ke f£35t) Keff L <
jatm,k (K'eff; t) = Tatm,k (K'eff; t) e’ ifef il Reff & 1 ; (13)



- 12 —

where Tyem i (Kesr; t) is the extinction integrated over the atmospheric path, 7 (keff;t) is the
refractive index integrated over the atmospheric path, L is the atmospheric path length, and
x4

1 is the 2x2 unit matrix. Tgumk(Kess;t) varies over time scales of seconds to hours, while

Ny (Kesy; t) varies over time scales of order .

The beam combiner may be modelled as a retarder plus weak polarizer, i.e.,

> 1-— Ozbc’k(lieff) 0
Tvek(Kers) = _ : (14)
0 [1 = Boer(Kess)] eJPbe,k(Keg f)

where Yy i (Kery) is the relative phase and 0 < apek(Kesf), Boek(kerr) < 1. Beam splitters
are typically used as beam combiners, so each input/output combination (total of 4) will

have different Ypc i (Kerr), Qpek(Kesr), and Boe(Kess)-

Some detectors exhibit intrinsic non-zero polarizibility, e.g., a solid-state detector with
an anisotropic substrate. Also, non-zero polarizibility can be mimicked by beam motion on
a detector with a position-dependent sensitivity. Therefore, I express the Jones matrix for a

detector as

o 1 — aget(Kep; 2, Y) 0
jdet,k(ﬁeff;xay) = Ok(‘ray) . )
0 [1 _ ﬁdet(ﬁeff; ./I/‘, y)] e]'d’det(’ieffixay)

(15)
where z and y are the coordinates of the beam center on the detector, ¥ei(Kess; @, y)
is the relative phase, auget(kerr;®,y) and Ber(Kess; ,y) are small positive constants, and
Oy (z,y) is the overlap function (assumed non-polarizing). Og(x,y) is defined such that 0
< Ok(z,y) Oy(z,y) <1 and Oi(z,y) = 1, and is used to model the effects of light dilution
(squared-visibility reduction due to uninterfered light entering the detector). In real optical

interferometers, z and y are functions of time because of angle-tracking errors.
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Diffraction is a continuous process along the arms of an optical interferometer. For this
reason, it was not included in Equation 12. If I assume that diffraction is non-polarizing,

however, then the total effect may be modelled as as a single Jones matrix,

« nd

Taisth(Kesr) = Di(kegs) 1, (16)
where 0 < |Dg(kesr)| < 1. Whenever a light beam enters/leaves a vacuum, it crosses a
window. If I assume that the windows are non-polarizing, then their Jones matrices have

the same form,
< o
Jwin,km(’{eff) - ka(’{eff) 1, (17)

where m is the window number.

4.2. Mirror Train

x4
The Jones matrix for the mirror train, Jpqink, may be further subdivided into additional

Jones matrices

A4 A4 A4 <~ A4 A4

Jitraingk = Joptk - Jaik - J feedk - Jaok = Jick (18)

where ﬁopt,k is due to the mirrors that feed the beam combiner, S)dl,k is due to the delay line,
3) feed 1 due to the feed system, (j)(w,k is due to the adaptive optics system, and (j)lc,k is due
to the light collector. As before, all coordinate system transformations are contained within
these Jones matrices (cf. Appendix C). The standard Jones matrix for a mirror in its native

{%x-y} — {P-§} basis may be found in Appendix D.

Delay lines typically consist of two mirrors (three reflections) in the same plane. Using

the formulae in Appendix D, the Jones matrix of such a delay line, in its native basis, may
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be expressed as

5 T Tpli] pliz] Tp[i1] 0
0 Ts [Zl] rs[iZ] 7”5[7;1]
. (_)I
= ef2mress [+ Az (0] T age(Kesr) s (19)

where r, and 7, are the p and s transmission coefficients (independent variable 7(k.ff) not
explicitly shown), i; and iy are the incidence/reflection angles, z(t) is the correct delay-line
position that removes the geometric delay above the atmosphere (I assume that the delay

lines are in vacuo) and Azg(t) is the 2, (¢) error signal.

Assume tip-tilt adaptive optics. Tip-tilt mirrors move at most by a few arcseconds,

g
which changes Jq. by only a negligible amount. Of course, the mirrors cannot track the
phases across the wavefronts perfectly, leading to a reduction in |Kiy(kess)|>. If the tip-tilt

motions are approximately the same for both axes over time scales longer than %, then

rpli] 0

Q

Taon(bespit) ~  Ag(t)

0 i

—!

= Ak (t) Jao,k(ﬁeff) ’ (20)

where 7 is the mean incidence angle and A(¢) is a complex function of time.

Light collectors may be either siderostats or telescopes. Up to the present time, most
optical interferometers employ siderostats because of their well defined pivot points (leading
to well defined baselines). For siderostats, the unit vectors defined in Appendix D still
apply, except that they are functions of time that depend on the source coordinates and
siderostat pointing model. If the orientation and/or polarization properties of the siderostat

mirrors in a baseline are not the same, a small sky dependence in |K5(kefs)|” may result,
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which introduces additional complications when calculating |Ky5(kess)|*. Both orientation
and polarization problems may be virtually eliminated if the siderostats are replaced by
telescopes with Cassegrain foci and the mirror trains replaced with polarization-preserving

optical-fiber feed systems (Reynaud et al. 1994).

4.3. Multiplication and Factorization

In this section, functional dependencies will not be shown explicitly. I am not interested
in effects due to the beam combiner and detector (cf. Section 6), so for simplicity I will
assume that the beam combiner and detector are not polarizers/retarders, which means that
Yook = 1 — Qe = [1 — Boe] €7k and Yaerp = 1 — Qgere = [1 — Baer) €/¥%t+. Therefore,
the Jones matrix for the k¥ arm of an optical interferometer is

< J2T Ke £ f [2+A2E] j2T K ﬁkLHI
Ji =Dy Hka Vet Ok Vocp €7 "ef1 Ay Totmp € Jyinn >, (21)

m

where
! PR =Y <~ ! >
Jtrain,k = JOpt,k ' Jdl,lc ) ered,lc ) Jao,k ) chak : (22)
Using Equation 21 and the Jones-Mueller matrix relationship (cf. Appendix B), the

scalar throughputs of Section 2 may be written as

!
My = Mgt Muyingt Maet et Mshearkt Mue gt Marki Mao gt Matm ki M, (23)

rain,kl ’

where Maifs e = Dy Df, Myingi = ([1n Wam) (I, Wira)s Maetkr = Vaetk Vaet,s Mshear ki =
_ 52 A _ _ i gL
O O1, Mye gt = Yo,k Yoe,1» Mar = €77t s Bt ol Moo 1 = Ay Af, Mapm gt = Tatm ke Tatm,y €7 Fet5™iE,
, AT ! - ! o ! ol ——1 B B
Mtrain,kl =d" - Mtraz'n,kl ' S(pkl)’ Mtrain,kl =T- Jtram,k ® Jtrain,l T M = Mg — Ty, 2 =

2k — 21, and Azg = Az, — Az Note that non-polarizing components/effects (Jones matrices
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x4
proportional to 1) factor into their own scalar throughputs; Jones matrices for individual
mirrors do not factor. If the scalar throughputs for each component/effect are similar for

each arm, then

~ !
MO ~ Mdiff,O M'wz'n,O Mdet,O Msh,ea'r,O Mbc,O Mdl,OMao,O Matm,O M

train,0

(24)

where I define Mdz’ff,o = %[Mdiff,ll + Mdiff’QQ], AMdz’ff = [Mdiff,ll — Mdz'ff,QQ], etc. All of
the first-order terms cancel, and I have neglected the higher-order terms. Using Equation 3,

the calibration constant may then be written as

!
Ko =~ Kaifri2 Kwin2 Kaetn2 Kshear,12 Koeq2 Kar12 Kaoj2 Katmi2 K, (25)

rain,l2

where Kyirfio = Maigi2/Maigo. ete.

5. Simple Analytic Example

With the formalisms developed in Section 2 and Appendix B, I can derive a closed-form
| K- 12\2 for an idealized optical interferometer. Let B be an unpolarized electric field incident

on both light collectors. For simplicity, assume that the Jones matrix of arm 1 is diagonal,

<« Ta 0
Ji = ' ; (26)
0 rypel?
where 0 < 74, 1, < 1 and ¢ is the relative phase. The transmission coefficients r, and r, are

2 —
Tas Rb -

N

not directly measureable, so I express them in terms of throughputs, i.e., R, =

: ‘rb ej‘z"Q = 77, and R = R, + Ry. The linear polarizability of arm 1 is defined as

_Rb_Ra

) 27
P=F R (27)
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which is the amount of linear polarization produced when unpolarized light is incident upon

>
the arm. With these variables, J; may be rewritten as

‘i(R,p,@:x/ﬁ[m i .1-
| o viEper |

The output electric field of arm 1 is f)l = 31 - E.

!
Next, define a Jones matrix for arm 2, 32 = 3)1(R + AR, p+ Ap, ¢ + A¢). Just before
combination, assume that the beam of arm 2 is rotated by a small angle (Af) with respect
— ! — — —_ ! -
to the beam of arm 1. Therefore, B, = J, - B and B, = R(A0) - E, = R(A) - J, - E =

3)2 . E, where ﬁ(AH) is a rotation matrix (cf. Appendix C).

« g
Now that J; and J, have been specified, I calculate the exact form of |Ky,|°. For an
unpolarized source, the throughputs in Equation 7 depend only on the M} terms of the

Mueller matrices. Equation 3 then becomes

2

1 1+ 58 | Ap Ap .
|K12|2=Z[1+l;]2 (1-p) 1—E+(1+p) 1+m63A¢ cos? Af. (29)
2R

For small p, AR/R, Ap/(1+p), A¢, and A, a simplified expression may be derived, namely

2 _ _ - - 2 = 2 2
(K[ =1~ 7 7AP" — A — AG% (30)

1 [AR]Q 1 1
R

Note that all first-order terms cancel and any differences between the arms reduce |Kis|*, as
expected. Although this equation is useful for understanding general trends, keep in mind
that |Kys|? for other system configurations will have slightly different forms. These results

lead to an important concept, namely that differential throughput and elliptical-polarization

A nd g
measurements can be used to predict |K12|2 for properly modelled J1 and Js.
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6. Monte-Carlo Mirror-Train Simulations

In this section, I perform example simulations dealing with the polarization and retarda-
tion effects of mirror trains in optical interferometers, further demonstrating the formalisms
developed in Section 2 and Appendices B, C, and D. The simulation program, written in

C++, is available by request from the author.

6.1. Description

The simplest optical interferometer has two near-identical mirror trains (cf. Figure 1),
so for the purpose of these simulations I allowed the locations of the mirrors in the second
train to be identical to the first except for a constant offset (cf. Figure 2). Since this paper
does not deal with any specific optical interferometer, I performed a large number of Monte-
Carlo runs using “random” mirror trains. A random mirror train consists of a series of N
mirrors separated by identical distances and at random directions in three-dimensional space
(cf. Figure 2); for these simulations, 2 < N < 15. Approximately 10000 runs were required

for each N to provide meaningful statistics.

The distribution of inclination angles for randomly distributed mirrors is shown in Figure
3 (the histogram symmetric about 45°). This distribution is not entirely acceptable, since
typical optical interferometers do not have many (if any) large inclination angles. To remedy
this situation, I artifically eliminated inclination angles greater than 60° and empirically

skewed the distributions to slightly lower inclination angles (the other histogram, Figure 3).

Since each optical interferometer employs different types of mirror surfaces and operates

over a variety of wavelengths (including the near-IR), I decided that the best compromise
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for my simulations was uncoated silver in green light (72 = 0.177 — j3.638 for ks = 1.697
pm~!; Jenkins and White 1957). Typical optical interferometers use mirrors with superior
polarization and retardance properties, so these results represent worst-case scenarios. As a
simplification, I assumed that all of the mirrors were pristine and identical, since I could not
specify how the reflecting surfaces degraded with time. Others have discussed the effects of
non-identical reflecting surfaces. Rousselet-Perraut et al. (1996) calculated that |K£rain,12|2
(cf. Equation 25) is reduced by ~ 1% if the differential throughput between the arms is ~
20%, a relatively small effect (and consistent with Equation 30). Also, Beckers (1990) deter-
mined that differential phases between mirror trains have a significant effect on |Kt,'rain,12|2

(again consistent with Equation 30).

Because the mirrors have identical reflecting surfaces, the only other free parameters
are the azimuth and elevation angle differences between corresponding mirrors in the arms.
These deviations in orientation produce cumulative polarization and retardance differences
between the trains, affecting ‘Kémm,m ‘2 significantly (cf. Section 6.2). Here is a description of
how the angle offsets for each run were applied. First, I created the two mirror trains. Second,
I “twiddled” the first mirror of train 2 in both azimuth and elevation by deviations selected
from Gaussian distributions whose 1o widths (0gng.) Were between 0.5° and 3.0°. Third,
I compensated for this misalignment by adjusting the next mirror to achieve parallelism.
Normally, two following mirrors are used to achieve both parallelism and overlap, but for
this analysis I assume that beam shear is not a polarizing effect, so I neglect it here (it factors
out; cf. Section 4.3). Next, I twiddle the second mirror, and recursively repeat the process
along the entire train. Note that the last mirror of train 2 was used only to force its output
beam parallel to the output beam of train 1, which is all that is required because I am not

considering the effects of beam combination.
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6.2. Results

In this section, “distribution” bars are shown in all plots, i.e., the standard deviations

about the means, not the errors of the means. In Figure 4, I show M;,

ain,11 Versus N. Note
that the distribution bars are very small (on the order of a few mmag) and the extinction
is a linear function of the number of mirrors (slope &~ 55 mmag mirror~"). These results

prove that mirror orientations have very little effect on M; so these numbers may be

train,11
used with little error for any optical interferometer with the same N and mirror surfaces.
Figures 5 and 6 represent the linear polarization (p; = \/m) and total polarization (p; =
\/m), respectively, versus N for train 1. Note that after N R 10, the polarizations
first level off and then decrease. This situation is analogous to a system consisting of a
series of weak polarizers at random orientations about the optical axis, i.e., as the number of
components increases, the more the polarization effects cancel. Note that there are no plots

for linear-polarization position angle () and circular polarization (v), because their averages

are undefined and 0.0, respectively, for random mirror trains.

- M

train,22

In Figure 7, T plot AM]

train

_Mt,

rain,11?

the RMS differential extinction

between the two arms, versus N and 0gpg.. Even for the worst case, AM; < 100 pmag.

train
Figures 8, 9, 10, and 11 display RMS differences of the linear polarization (Ap;), linear-
polarization position angle (A#), total polarization (Ap;), and circular polarization (Awv),

respectively, between the mirror trains as a function of N and ogge-

In Figures 12 and 13, I show |K1{W-n712|2 versus N for ogng. = 1.0° and 3.0°, respectively.
Note that the means decrease linearly with increasing /N, and that the means decrease
more quickly for o,,9. = 3.0°, as expected. Besides the means, the quantities of most

interest are the distribution bar sizes and number of simulations above and below the means.
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These quantities indicate that large reductions in |Kt,'rain,12‘2 are possible and occur for a
significant number of random feed systems. Large decreases in ‘Kémm,mf are produced by
large differential field rotations, amplifying polarization and retardance differences between
corresponding mirrors (Beckers 1990). In Figure 14, I plot the mean ‘Kérain,12|2 versus N

over a range of ogng. between 0.5° and 3.0° (no distribution bars, for clarity).

Because of the monotonic behavior of the mean ‘Kérain,12‘2 and the RMS differences,
it should be possible to express the mean |Kt’m~n,12|2 in terms of these RMS differences,
independent of NV and og4pge. Figures 15, 16, 17, 18, and 19 clearly show overlap to better
than 1% for all N and 04ng.. These results lead to the same conclusion as stated in Section
5, namely that differential throughput and elliptical-polarization measurements may be used

to predict the system squared visibility.

The polarization properties of mirrors plus Equation 30 can be used to derive an order-of-

magnitude estimate of | K ? Versus Oanales & useful relationship for optical interferometer
g t g

rain,l2
design. For a single mirror, My, ;. 11, Pi, P, and v are o< 4 (the incidence angle) over the
range of interest (between 0° and 60° degrees). I expect the same linear behavior for the

differential quantities, i.e. [0M] ...|, |0pi|, |0p¢|, and |dv| versus |di|, between a single pair of

train
corresponding mirrors. In addition, [06| o< |07] and |d7)| (the differential rotation of the p and
§ unit vectors between a pair of mirrors; cf. Appendix D). Both [6¢] and [61)| « 0gngie, but
what about the RMS A and A for an entire mirror train? If I assume a two-dimensional
“random-walk” model, then RMS Ai o« v/2N |§i| and RMS Av o< /2N |§4)|, which means
that both RMS A¢ and 6% are o moangle. Because RMS AM! Apy, Apy, Af, and Av

train>
for the mirror train oc RMS Aj and A, they are also o< V/N Gangie- Let AM2,, — AR?,

train

Ap? — Ap?, and Ap?, Av? x A¢?®. When these quantities (and Af?) are substituted into
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Equation 30, they give

‘Kérain,12‘2 ~1— fNUczmgle ) (31)
where f is a factor dependent on the type of mirror coating and the deviation from the
random walk model. Note that this equation is consistent with Figure 14. Even if I used
an optical system in Section 5 that led to a slightly different version of Equation 30, the

functional form of Equation 31 would not change, which means that it is valid for any mirror

train.

7. Conclusions

In this paper, a formalism was developed for modelling the response of an optical interfer-
ometer and Fourier-transform spectrometer, including polarization and retardation effects.
The formalism includes both the Jones and Mueller calculi and the relationship between
them. System squared visibilities depend not only on the instrument and atmosphere, but
on the intrinsic polarization of sources as well. A sample algebraic calculation of the system
squared visibility was performed, and a typical functional form for small differences between
the arms was derived. These results showed that differential polarization measurements could
become a useful tool for improving the accuracy of squared-visibility measurements for any
specific instrument. Example Monte-Carlo simulations were performed for random mirror
trains. These simulations, consistent with the algebraic calculation, showed that 1) signifi-
cant reductions in ‘Kémm,u‘z are possible for a significant number of random configurations

and 2) ognge is an important design parameter for optical interferometers.

Once a polarization/retardation model for a specific optical interferometer is constructed,

how can it be used? First, consider a covariance analysis, i.e., changing each mirror orien-
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tation angle slightly in arm 2 to see how |Kt,'rain,12|2 is affected. Of course, after a mirror is
altered, the next mirror in the train should be adjusted for parallelism. Second, in Section
4.2, I touched on the possibility of a sky-dependent ‘Kgmm,lz ‘2. If polarization measurements
of unpolarized sources were performed with each siderostat (not simultaneously), changes in
‘Kérain,12‘2 could be mapped across the sky and automatically applied to observed squared
visibilities. This technique for measuring ‘Kémm,m‘z has distinct advantage over measuring

calibration-star visibilities, namely that it is immune to atmospheric effects.

According to Figure 7, the RMS AM;], .. is extremely small, so it is not practical to
measure it. The RMS quantities Ap;, Ap;, and Av are not quite so small, and measureable
with some effort. The last RMS quantity, Af, on the other hand, is very easy to measure, so
it should have slightly more weight when determining ‘Kérain,12‘2' Effects other than mirror
orientation deviations, such as dust layers and coating degradation, could be included in the

mirror-train analysis, if desired.

The author thanks Dr. Tyler E. Nordgren for drawing Figures 1 and 2; Drs. H. Melvin
Dyck, Marvin E. Germain, Robert H. Koch, David Mozurkewich, Tyler E. Nordgren, Thomas
A. Pauls, and Jeffrey J. Sudol, for critical review of this manuscript; and Gregory A. Shelton

for obtaining important journal articles via interlibrary loan.
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Appendices
A. Electric-Field/Jones-Vector Definitions

In general, starlight is partially polarized and may be represented as a sum of unpolarized

and polarized electric fields,

—

E(F,t) = £(F,t) + €, 1), (A1)

where E(f, t) is the partially polarized electric field, I (¥, t) is the unpolarized electric field,
€(r,t) is the polarized electric field, ¥ = [z, v, z] is the light-collector location, and ¢ is the
time. According to most elementary textbooks (e.g., Hecht 1987; Kliger, Lewis, and Randall
1990), only monochromatic plane waves (100% polarized) may be expressed as Jones vectors.
If we are careful, however, Jones vectors may be extended to represent partially polarized

and unpolarized plane-wave packets as well,

E(7,t; K Ei(Tt; K € (F,t; K
@) | _[a@un ] [a@ne] )
E2 (Fa t; K:) 52 (Fa t; K’) €2 (I_:a t; K’)

where « is the center wavenumber of the plane-wave packet and the subscripts indicate com-
ponents in an orthogonal basis {1-2} (e.g., horizontal /vertical, right-circular/left-circular).
As an aside, I mention that Beckers (1990) uses the sum of specific 100%-polarized Jones
vectors to mimic unpolarized light (when the Stokes vector of the sum is calculated, it is

unpolarized).

Unpolarized light (more appropriately called natural light) is produced by a very large
number of independent atomic emitters. Each excited atom radiates a randomly oriented po-
larized plane-wave packet at approximately kK = AFE/hc, where AE is the difference between

energy levels, h is Planck’s constant, and c is the speed of light. Each individual emission



— 925 —

lasts for roughly 7, ~ 107% s, which determines the natural line width of the plane-wave
packet dk/k ~ 1/cTek (~ 1079 at optical wavelengths). All emissions with nearly the same
wavenumber combine to form net polarized plane-wave packets which persist for no more
than a few times 7,. If the integration time 7;,;, > 7., the polarization information is lost,
effectively yielding unpolarized light. Because dk is so small, it may be used as an integration
variable over a bandpass width Ax (approximately centered on a bandpass effective wave

number Keyy).

An unpolarized electric field vector exhibits these characteristics: 1) components in any
orthogonal basis produce the same time-integrated flux; and 2) the relative phase between
components in any orthogonal basis varies randomly and rapidly with time, i.e., the temporal
coherence is so low that for 7;,; > 7. the time-integrated coherence is 0. Therefore, the Jones

vector for unpolarized light may be represented as

Ei(T, t; k) E(7: k) e391(itin)
82 (I_", t, K)) 5(,5‘, /{) ej¢2(ﬁ:t§"3)

g£i2m (a 1) (A3)
where £(p; k) is the real amplitude for both components, the ¢;(p,t; k) are the random and
temporally uncorrelated phases for the components, v is the frequency, and p' = [z,y]. For
convenience, I write the electric-field components as phasors. The {i—ﬁ} basis and p' lie in
the X-¥ plane and the wave propagates along the z axis. The plane-wave packet width dx
depends solely on the form of phases ¢;(7, t; k). The choice of + is arbitrary, but consistency

is essential (cf. Appendices B, C, and D).

Polarized light is produced when 1) atoms emit a significant number of photons with
the same polarization; or 2) light interacts with matter. Unlike unpolarized light, orthogonal

components of a polarized electric field are fully coherent, i.e., the relative phase between the
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orthogonal components is constant. Therefore, the Jones vector of a polarized plane-wave

packet may be expressed in phasor notation as

€1(p; K -| .

E,(I__,, t: Ii) _ [ 1( ) e:l:_y27r (kz—ut) ’ (A4)
where €;(7; k) and ey(p; k) are the real electric-field component amplitudes and ¢(p; k) is
the constant phase difference. The width of this plane-wave packet is arbitrary, so I choose
dr (the same as before). Note that unpolarized and polarized electric fields are temporally

incoherent with each other, by definition. This fact is used in the time averages in Appendix

B.

B. Jones, Coherence, and Stokes Relationships

Consider a Jones vector (an electric-field wave packet written in phasor notation; cf.

Appendix A) that has been modified by an optical system, or
— L nd —
E'(t; k) = J(x) - E(t; ), (B1)

where
) = (k) J(k) (B2)
T2 (k) J?2(k)
is the complex Jones matrix of the optical system in the 1-2 basis. For more details concern-
ing the Jones calculus, see Shurcliff (1962) and Kliger, Lewis, and Randall (1990). With these

equations and the definitions of Appendix A, the coherence of two arbitrary electric fields A

and B, integrated over time and wavenumber bandpass, may be expressed as (Hamaker et
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al. 1996)
Clrgy) = [ e (Bt o Bj(6m)
_ /Mdﬁ< Ja(r) - Ba(t )] @ [Ta(e) - By(t0)])
= [ an5a @ T] - (Batim) @ Bysn)

= [3A(/~’~eff) ® (j)*B("@eff)] ' <EA(t? fress) ® Ey(t; “eff)>

Ealkes)EB(Kepr) + €ar(Kerr)ei(Fers)
s €41 ("feff)EBz(lieff)e*j‘ﬁB(“eff)
= Cl(fers) - |
GAQ(K;eff)eBl(Kleff)€‘7¢A(H‘eff)
EnlFes)En(Keps) + €anl(Fess)ems (opy) ellPatrer=0mlery)]
%I(’{eff) + ill(lfeff)
o i12(Keff)
= Cl(fers) - _
i21(Kegy)
| %I(“eff) + i (Keyy) |
H -
= C(kess) - Clkess), (83)

where () denotes the time average over T;,;, ® is the outer (direct) product (Hamaker et
g

al. 1996), C(kess) is the coherence matrix, Z(k.ss) is the unpolarized flux, and i1 (kesy),

i19(Kefy), G21(Kefs), and gy (kefs) are the polarized fluxes in the 1-2 basis. In this derivation,

I employed the theorem in Hamaker et al. (1996) to separate the Jones matrices from the

Jones vectors.

The coherence vector may be converted into a Stokes vector by a simple matrix trans-

formation,

< —

S'(kess) = T-C (Kess)



1 (Kerr) -
= M(kesy) Qleess)
Ul(Kery)
| Vikers) |
I'(Kegy)
_ Q' (Kefy) (B4)
U'(Kery)
| V'(Kess) |

4
where M(kesr) is the Mueller matrix; I(kesr), Q(kess), Ulkess), and V(kesr) (and the
A nd
corresponding primed quantities) are the Stokes parameter fluxes; and T is the coherence-

to-Stokes transformation matrix. Stokes vectors may also be written in normalized form,

S(kess) = §_(“eff) [ 1 (fegy)
1

q(Ferr)

u(Kesy)

v(Kefy)

where g(kesr), u(kesr), and v(kepp) are the normalized Stokes parameter fluxes. For more
details concerning the Mueller calculus, see Shurcliff (1962) and Kliger, Lewis, and Randall
(1990).
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x4 ~ ~
The exact form of T depends on the Jones vector basis. If 1 — X and 2 — ¥, then

HT

and

—

S(kers) =

(1 0 0 1]
1 0 0 -1
lo o1 1 0
0+ F7 0

T(Kegs) + toa(Keps) + tyy(Kers)
icccc(K'eff) - iyy(’ﬁeff)

iay(Keff) + tye(Kef)

:t] [iwy(ﬁ;eff) - iyﬂ?(lieff)]

(B6)

(B7)

Alternatively, if 1 —» R = [% + j§] /2 (right-circular polarization) and 2 — L= (% F 79 /V2

(left-circular polarization), then

HT

and

S(kers) =

-1 0 0 1-
0 1 1 0
o w0
1 0 0 -1

Z(kess) + irr(Kers) +irr(Kesr)
irr (Kesf) + ior(Kesr)
+j [irr (Kess) — iLr(Kesr)]

irR(Kesf) — inn(Keyr)

(B9)

Note that when E 4(¢; k) = Eg(¢; k), Equations B7 and B9 become the classical (zero-spacing)

Stokes vector definitions (Hecht 1987).
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For the rest of this appendix, functional dependences will be suppressed for the sake
of brevity. Seven elements of any Mueller matrix are most important for characterizing its
effects, so I present them here. The most often quoted quantity is the element in the upper

left-hand corner (row 1, column 1), corresponding to the throughput of unpolarized light,

M]ill — [Jliljlll*_}_ J]i2<]ll2* +J]31Jl21* +J]?2Jl22*] ’ (BlO)

N =

where the superscripts are the row and column identifications, respectively. Note that this
expression is independent of basis. The other three elements of the first row (from left to
right), are the throughputs for the Stokes ¢, u, and v polarizations, respectively. In the

{i-2} — {%-§} basis, these throughputs are given by,

1 * T T *
Mip = 5 TR = JPJP 4 TP TP = T (Bl1a)
]‘ * T TIT* T * T*
My = 5 [T + JVTE™ + ST + TP TP (B11b)
and
M,if = Fj 2 (T2 — IV Jres + TP — VI (Bllc)

while in the {1-2} — {R-L} basis,

1
My = o [T+ JE I+ R + et (B12a)
1
My = Fj 5 [T 7 = JE T+ JRa = I (B12b)
and
1
My = 5 [T = IR+ JERa = et g (B12c)

The other three elements in the first column (from top to bottom), are the Stokes ¢, u,

and v polarizibilities, respectively. The polarizibility is defined as the amount of polarization
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produced when unpolarized light is incident on the system. In the {1-2} — {%-§} basis,

these polarizibilities are given by,

1
M,?ll = 3 [JR TP 4+ J,nylwy* - J,wa;’w* - J;z’leyy*] , (B13a)
1
M,i’ll = 3 [J,?Jf” + J,‘ngf””* + J,nylyy* + J,nyfy*] , (B13b)
and
1
M/?zl = 4j 3 [J,f””Jf’x* — J,f‘”Jlm* + J,nylyy* — J,nyfy*] , (B13c)

while in the {1-2} — {R-L} basis,

1
M]?ll — 5 [JkRRJlLR* 4 J]fRJlRR* + J]fLJlLL* 4 J]fLJlRL*] ’ (B14a)
1
M]?ll — :I:] 5 [J]?ReleR* _ JlszJlRR* + JlfLJlLL* _ Jlf/LJlRL*] ’ (B14b)
and
1
M;clll — 5 [JlngJlRR* + JlgiLJlRL* _ J’f/RJlLR* o J]fLJlLL*] . (B14C)

Going from the Stokes/Mueller domain to the Jones domain is often useful, so I present
a summary of the mathematics here. Each Mueller matrix element (M}}") may be written
as an equation whose right-hand side consists of four terms (e.g., Equations B10, B11, B12,
B13, and B14). Each of these four terms consists of a product of two Jones-matrix elements
(J21J7®). These 16 equations may be expressed in matrix form, i.e., a 16 x1 column vector of
M™ equal to a 16x16 block-diagonal matrix (each block 4x4) times a 16x1 column vector
of Jp? J;*. The solution for each block is simple, since they are unitary (their inverses are
conjugate transposes). To solve for the individual Jones-matrix elements, first choose non-

zero J;"™ and J;™ (for the sake of argument, assume m, n = 1 here). Then for (m,n) = (1,2),
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(2,1), and (2,2), calculate the ratios R = J*/J} and R™ = J/™/J}!'. Only three phases
are required to uniquely describe a Jones matrix, so let Ji' and J!'* be real. For a zero-
spacing Mueller matrix, 3),6 = (j)l — Ji' = J!, and the problem is solved (J}' J!'! is already
known). For a baseline Mueller matrix, J}' and J'' cannot be determined independently
unless the ratio of the unpolarized throughputs for each arm, M} /M, is specified. Using
Equation B10 for M} and M;}*, I conclude that

T M 1 [REE  RP 4 R B15
J Mg 1+|R12| + [RP [+ [RP[

«— e
which in conjunction with the product J!! J!' completely determines J; and J;.

C. Transformation and Rotation

g
Jones vectors and matrices may be transformed between bases using the matrix H,

-E

ango
1

E// _

I
| ——

50| fi
!

- E (C1)

I
g

where E” is the output Jones vector, E is the initial Jones vector, E' is the transformed
Jones vector, ff is the Jones matrix, and 31 is the transformed Jones matrix. According to
Hamaker and Bregman (1996), ﬁ has a simple form when transforming from the {X-y} basis
to {R-L} basis, namely

1 |1 F
H= — , (C2)
V2|1 4

where the signs depend on the sign of the propagating exponential in Appendix A. The

~—1 =3
inverse of this matrix, H , does exist, and is equal to the conjugate transpose of H. I do
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not employ a basis transformation matrix for the Mueller calculus (Hamaker et al. 1996)
<>
because I use different versions of the coherence-to-Stokes transformation matrix T instead

(both methods are equivalent; cf. Appendix B).

The coordinate system of Jones vectors and matrices may be rotated as well. Rota-
x4
tion matrices are analogous to basis transformation matrices, so H in Equation C1 may be

x4
replaced by the rotation matrix R(¢)), where 1 is the rotation angle. In the {X-§} basis,

o costy  sine
R(¢) = , (C3)
— sinYy cos
while in the {R,L} basis
“ & o ——1 etiv 0
R¥)—>H-R¥)-H = _ . (C4)
0 eTFiv

The inverse of this matrix, ﬁ(dj)_l, is simply ﬁ(—d)). Note that ﬁ(w) is a Jones matrix in

its own right, namely a field rotator.

Stokes vector and Mueller matrix rotations are performed in exactly the same manner,

N N
SII — RMS
P s et ! o o
= [R-M R } = -§]
- M-8 (C5)

The rotation matrix is
1 0 00
-1 0 cos2y sin2y 0
(C6)
0 —sin2y cos2y 0

0 0 01
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<~
The inverse transformation is R(—1%). This matrix is also a Mueller matrix representing a

field rotator.

D. Mirrors and Mirror Trains

The incidence plane of a mirror, commonly called the p plane (p = parallel), contains
the incident and reflected Poynting unit vectors &° and &”, and the mirror-normal unit vector
m. The s plane (s = senkrecht = perpendicular, in German) is perpendicular to the p plane.

In this paper, p — X and § — ¥, so the Jones matrix for a mirror in its native basis is

[ a0 ]

g
jmirror[z; ﬁ(’ieff)] = o s (Dl)
[ 0 rsli; (Keg )] J
where
~2 . _ ~2 o . 2 .
i e )] = 712 (Kegf) €081 — /72 (Kefs) sm22 (D2a)
7i2(Kesp) cosd 4+ \/N2(Kep) — sin’i
and

. =) 2
ralis iFeps)] = — V) — sin (D2b)
cosi + /N2(kesp) — sin® i

are the Fresnel mirror coefficients, 7 is the angle of incidence (i = 0° is normal incidence),

and 7(kKerr) = np(Kepr) + jni(Kess) is the mirror refractive index (Reitz et al. 1979). These
formulae assume that the beam is incident from a vacuum to a thick (larger than the light
wavelength) and homogeneous metal layer, which is acceptable here. For a perfect mirror
(n, and/or n; — o), r, — 1 and r; — —1 at normal incidence. Note that the signs of these

coefficients depend on the directions of the corresponding unit vectors (cf. below).

n(kess) may be expressed in terms of two measureable quantities,

2
WKepr) = = Sinip, \/ 1+ tan? i, [p(ipr; Kepp) =] \/ 1 = p?(ipr “eff)] ) (D3)
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where i, is the principal incidence angle and p(i,; keff) is the principal polarization (the po-
larization produced when unpolarized light is incident at i,,). When i = iy, 7p[ipr; 7(Kesr)] is
at its minimum, p(Zp,; Keysyr) is at its maximum, and the phase difference between r,[i,,; i(kefr)]
and 74[iy; N(kesr)] is exactly 90°. Note that most commercial mirrors employ a protective
dielectric layer over the metal layer, which leads to effective 7i(k.ss) that are somewhat

different from textbook values of the underlying layers.

In general, mirrors in a train do not share the same coordinate system (basis). Assume
that an electric field E is incident upon a train of mirrors, and is expressed in terms of the

basis of the first mirror. Then, the resultant electric field is

= <> < x4 x4 x4 < —
E' = RWnnt1) - In: o "RWn-1pn) - In-1- - -R(¥12) - J1-E

! —
- J-B, (D4)
x4
where the R() are rotation matrices found in Appendix C. The final rotation matrix,
g
R(¥n,n+1), is used only for one arm of an optical interferometer baseline, and is required in

order to express the E' of one arm in terms of the coordinate system of the other arm.

The technique for determining the p and § rotations along a train of mirrors (Figure 2)
is as follows. The a priori quantities are the first incident Poynting unit vector, 4%, and all
of the mirror-normal unit vectors, m,, ,,+1, where n is the mirror number. First, calculate
the initial incidence (= reflectance) angle. Then, calculate the first reflected Poynting unit
vector, R7. Next, set &5 = A7 and repeat this process for the entire mirror train. The

incidence angle and reflected Poynting vector are given by

cos i, = — R - Mt 1 (D5)
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and

/%:L = ’%iH—l = /2;:1 + (2 CoSs Zn) fnn,n+1 . (D6)

Once these quantities have been determined, the incident s and p unit vectors, § and

P!, must be calculated,

= T (D7)
and
pnz—ki Xﬁil (DS)

There is a choice, on reflection, whether the s or p unit vectors remain unchanged. The

standard convention is 87 = §! = §,, so

Pl = — i X 8,. (D9)

The rotation angles needed for Equation D4 are given by

AT - [8n X Snp]

tan wn,n—kl = (DlO)

§n ) §n—|—1
Note than the “atan2” function should be used to calculate vy, ,, 11, since it takes the quadrant

into account.
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Fig. 1.— A schematic diagram of an ideal two-element optical interferometer.



N-1 Feed Mirrors /

In Each Arm

) /

N

-
To Beam Combiner

Parallelizing
~ Mirrors

Fig. 2.— A schematic diagram of a random feed system for the simulations in this paper.

The mirrors in arm 1 are separated by unit length, and their orientations are random. The
mirrors in arm 2 are offset in space by a fixed amount from the corresponding mirrors in
arm 1, plus they have small mirror orientation errors. The effects of a beam combiner are

not considered.
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The percentages represent the probabilities above and below the mean.
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increases toward the right. No distribution bars are shown, to avoid confusion.
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toward the right. No distribution bars are shown, to avoid confusion.
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toward the right. No distribution bars are shown, to avoid confusion.
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toward the right. No distribution bars are shown, to avoid confusion.
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toward the right. No distribution bars are shown, to avoid confusion.



